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Abstract—With the advent of high-throughput DNA sequenc-
ing technology, the analysis and management of the increasing
amount of biological sequence data has become a bottleneck
for scientific progress. For example, MG-RAST, a metagenome
annotation system serving a large scientific community world-
wide, has experienced a sustained, exponential growth in data
submissions for several years; and this trend is expected to
continue. To address the computational challenges posed by this
workload, we developed a new data analysis platform, including
a data management system (Shock) for biological sequence data
and a workflow management system (AWE) supporting scalable,
fault-tolerant task and resource management. Shock and AWE
can be used to build a scalable and reproducible data analysis
infrastructure for upper-level biological data analysis services.

Index Terms—data management system, workflow, metage-
nomics, bioinformatics, data analysis platform, cloud computing

I. INTRODUCTION

Next-generation DNA sequencing technology has dramat-

ically reduced the cost of data generation [23]. This has

been greatly benefited genetic biosciences, especially metage-

nomics. Metagenomics [10] is the study of microbial com-

munities. Insight into these communities sheds light on a

wide range of areas, including human health [6] and envi-

ronmental processes [2]. It typically needs additional depth

of sequencing; thus a low sequencing cost is beneficial. In

the meantime, however, the computational costs of analysis

have grown unsustainably as large amounts of data have been

generated. As a result, the bottleneck in metagenomics has

moved from sample collection and data generation to data

analysis [14].

MG-RAST [4][20] is metagenomics analysis server, provid-

ing automated data analysis for metagenome data sets submit-

ted by users via web interfaces. MG-RAST was launched in

2007 at Argonne National Laboratory as a free service and

has grown to become a dominant community resource for

metagenomic data analysis. As of late June 2013, MG-RAST

has analyzed 28 Tbp (tera base pairs, 10
12 base pairs1) of

sequence data across 83,000 metagenome samples for over

10,000 registered users from over 60 different countries. The

MG-RAST project has experienced the data deluge firsthand,

as submission volumes have grown continuously (Figure 1).

This data growth has caused several difficulties. First,

computational budgets are effectively flat, and data is grow-

ing faster than the increase in computational capacity from

1Base pairs are building blocks of the DNA double helix. In the sequence
data file, a base pair is represented by a character (one of ACGT or other
letters for ambiguity).

Moore’s law provides. Second, many bioinformatics tools

used for data analysis perform poorly with large-scale data.

Third, data management operations, including storage, update,

retrieval, and compression, have become more expensive and

inconvenient. Last but not least, as the computation is more

expensive for larger data size, duplicate computations have

become unaffordable. These problems have combined to result

in a situation that impacts our ability to run a resource such

as MG-RAST.

With these problems, we are motivated to build a new

software infrastructure with the goals of providing a scalable,

portable, customizable, reusable, and reproducible data anal-

ysis capability. To this end, we have developed two software

products: Shock and AWE. Specifically, Shock is an object-

based data management system for the biological data; it

implements metadata management and domain-specific sub-

object operations. AWE is a workflow management system

supporting flexible, fault-tolerant task management and dy-

namic scalability for computing clients. AWE and Shock can

collectively be used to build a data management and analysis

platform for upper level services involving big data, including

MG-RAST.

II. SYSTEMS AND METHODOLOGY

A. Motivating Problems and Design Goals

The major problems motivating our design are twofold.

First, the data deluge is causing longer job turnaround time as

the computing capability is limited within one computing fa-

cility. Thus, a remotely scalable architecture would be helpful

for increasing the throughput when the system is overloaded.

Fig. 1. Data submitted to MG-RAST is continuously growing. (The data burst
in Q3/2011 is caused by the data submission from NIH Human Microbiome
Project (HMP) [6])



Second, with the growing data not managed properly, unnec-

essary duplicated computation is inevitable, and reproducing

of the results become harder. Therefore, a data management

ecosystem is needed to help with data sharing and reusing.

To these ends, we designed a new system in which data and

computation are loosely coupled in a data management system

(Shock) and a workflow management system (AWE).

B. Shock Data Management System

Shock is a data management system for moderate to large-

scale biological data sets. Shock is designed as a layer of

system software built on top of backend storage systems,

providing an object-based storage interface tailored for bioin-

formatics workloads. An object in Shock encapsulates the

actual data file and the metadata of its scientific provenance

as well as the computational provenance. Shock supports

a number of common bioinformatics data formats and can

provide subselection and merge capabilities that minimize I/O

requirements for analysis workloads and improve scalability

for large numbers of computing clients. These capabilities

are implemented by indexing the data in chunks (e.g., one

sequence per chunk for biological sequence data).

Shock comprises two major components. One is a web ser-

vice that provides REST [15] APIs for data storage, retrieval,

query, indexing, and so on. The other is backend data storage

facilities to handle the storage and retrieval of data files and to

operate the data objects such as updating metadata and creating

indexes. The object information are stored in MongoDB [5] for

the convenience of data query. The actual data file is stored in

the backend file systems. Currently Shock supports standard

posix file systems; it can be built on top of any parallel or

distributed file systems.

To retrieve a data file, one can use a REST API providing

the Id of the data. The query functionality enables users to

retrieve a set of data that matches a query. For example, one

can get all the sequence data from project “X” that has the

metadata attribute “origin” equal to “deep sea water.” With

the metadata support and query functionality, the sharing and

reusing existing data become possible and convenient.

Using indexing, one can retrieve any range or part of the

sequence file (e.g. get sequence numbers 1000-2000 or get the

first or second 100MB of the file). Also, an empty Shock object

(object without data file) can be created to accept partial files

to merge into the single file in that object. This feature enables

split and merge input and output data for embarrassingly

parallel tasks to be processed by different computing clients.

Shock is implemented in the Go programming language as

an open-source project maintained at Github.com [7]. Go is

designed (by Google) for writing large-scale system software

and thus is suitable for our case.

C. AWE Workflow Management System

AWE is a workflow management system that manages and

executes scientific computing workflows or pipelines. AWE

models application-related concepts into three hierarchical

elements: job, task, and workunit (Figure 2). A job, charac-

terized by its input data, and workflow description (e.g., data

dependencies), is parsed into task, A task represents a certain

data analysis operation. A task can be split into multiple

workunits running the same command on different parts of

the input data. AWE manages and executes these elements in

a coordinated and automated fashion.

Fig. 2. Key elements managed by AWE: job, task, and workunit.

AWE is designed as a distributed system that contains a

centralized server and multiple distributed clients. The server

receives job submissions and parses jobs into tasks, splits

tasks into workunits, and manages workunits in a queue.

The AWE clients, running on distributed, heterogeneous (in

terms of hardware or applications) computing resources, keep

checking out workunits from the server queue and dispatch the

workunits on the local computing resource. AWE uses Shock

to handle input and output data (retrieval, storage, splitting,

and merge). AWE uses a RESTful [15] API for communication

between AWE components and with outside components such

as Shock, the job submitter, and the status monitor. These APIs

enable incorporation of AWE features into other systems.

A working diagram of AWE is presented in Figure 3. First,

the user uploads data to Shock if the data is not already there

(0). Then the user can submit job scripts that specify the

workflow and the input location (i.e., Shock object ID) to the

AWE server (1). Next, the AWE server parses the submitted

jobs into tasks and workunits, stores job information in Mon-

goDB, and manages workunits in a queue (2). Meanwhile,

the server creates an empty shock object for each workunit

to store the output data that will be produced in the future.

This empty object may be filled in by multiple cooperative

workunits working on different part of the input data (3). The

AWE clients keep doing the following repeatedly: obtaining

queued workunits (4), retrieving input data from Shock (5),

dispatching work on computing resources (6), pushing output

data to Shock (7), and notifying the server of the workunit

status (8). When the AWE server receives a “work done”

notification, it updates the queue by parsing more tasks if their

dependent data has become available. When all the tasks of

a job are done, the user can download the output data from



Fig. 3. AWE working diagram. A centralized AWE server parses submitted jobs and manages the workunit queue. Distributed AWE clients repeatedly obtain
workunits from the queue and dispatch computation locally. Shock is used for managing the data.

Shock (9).

AWE is also implemented in Go with source code hosted

on Github.com [1]. In the following we present some imple-

mentation details relevant to our design goals.

Server and clients. The AWE server provides centralized

resource management (e.g., queue management and client

management) and provides RESTful APIs. AWE clients run

as daemons on distributed computing resources. A client

comprises workers such as work stealer, data mover, work

dispatcher, and heartbeater. These workers run as concurrent

threads, and the time of computation and data movement for

different workunits can be overlapped.

Splitting tasks. The AWE server is responsible for splitting

tasks into workunits by dividing the input data. The data can

be divided based on total number of workunits or fixed data

size for each workunit. The way to split is configurable. In

either way the input data will be divided as evenly as possible.

The actual data splitting and merge are done in Shock. AWE

only needs to set the index ranges for the input data of each

workunit.

Queue management. Queue management is an essential

functionality of the AWE server. The workunits in the queue

are managed in dynamic, multi-dimensional groups or pri-

orities. Specifically, in order to handle a checkout request,

eligible workunits will be selected based on criteria such

as group name and supported applications of the requesting

client. This approach controls the spatial workunit placement.

For the eligible workunits, temporal prioritizing policies will

be applied.

Communications. The communication and data transfer be-

tween components all use HTTP requests defined in RESTful

APIs. The submitted job scripts and checked-out workunits are

both defined in JSON format. The communication between the

AWE server and client is light weight. During computation,

the actual data transfer happens only between Shock and AWE

clients.

Fault tolerance and dynamic scalability. AWE provides

fault tolerance features to maintain continuous service and

support dynamic component come and go. Specifically, the

AWE server can automatically recover the queue after restart

since the jobs are stored in MongoDB; the AWE clients keep

sending heartbeats to the server so that any loss of connection

can be detected and corresponding actions will be triggered

(e.g., client reregistration when server restarts or workunit

requeuing when the hosting client is gone). The AWE client

also returns a failed workunit to the server, enabling it to be

checked out by other clients. Some unrecoverable failures will

result in the suspension of the problematic jobs or clients and

notifications to system administrators.

D. Goals Achieved and Use Cases

Scalability and portability. With the data and computation

loosely coupled, the tasks can be scaled out to remote re-

sources. One important use case for web-based services such

as MG-RAST using AWE is that users contribute their local

computing cycles to their own jobs submitted to MG-RAST

to achieve fast turnaround.

Task splitting can help parallelize embarrassingly parallel

tasks and also make some tools perform better with smaller

data sets but it is not a requirement for scaling out tasks.

The scaling-out diagram is suitable for biological data

analysis workloads because they are typically of high compute-

to-I/O ratio, which means data transfer overhead is negligible

compared with the gains in computational expenses.

Reusability and reproducibility. With the provenance in-

formation and query capability, Shock and AWE can use

previous computed results to save the cost of duplicated

computing. For example, when the AWE server detects a

task conducts a duplicate computing, it directs the output

location to the successive tasks directly. Also, reproducibility



is convenient with the computational provenance information

being managed.

Customizability and flexibility. AWE can run any type of

pipeline or workflow described in a job script in JSON format

to define the data dependencies between tasks and to specify

the data location. Task execution and resource management

can be very flexible with AWE. The jobs can be allocated

based on user authentication so that users with computing

clients can checkout their own tasks only. Different tasks

within one job can be executed on different machines with dif-

ferent requirements such as hardware configuration, software

installation, security group, and data locality. This capability

is suitable for bioinformatics pipelines where different stages

of the pipeline always have different requirements for software

and hardware configurations.

Although our systems are motivated by MG-RAST, they are

suitable for building general data management and analysis

platforms supporting upper-level services such as Galaxy [16]

and Camera [26].

III. CASE STUDY

In this section we present a case study on how Shock and

AWE work to run MG-RAST jobs in the cloud environment.

We evaluate the scalability and throughput variation using a

real MG-RAST workload.

A. Applications and Testbed

For one MG-RAST job that represents a single metage-

nomic data set, MG-RAST runs a series of data process-

ing/analysis tasks in a pipeline (Figure 4). Tasks are accom-

plished by bioinformatics tools including our in-house scripts

or third-party tools [32].

Fig. 4. MG-RAST pipeline. The green ones are embarrassingly parallel,
which can be split into multiple workunits by AWE.

We have deployed the Shock and AWE systems in the

Magellan system [29] at Argonne. Magellan is a large-scale

cloud computing system managed by Openstack software,

tuned for scientific computing workloads. Magellan consists

of 7,500 compute cores, 30 TB of RAM, and about 1 PB of

storage, connected with a QDR InfiniBand fabric. Magellan at

Argonne has been serving multiple research projects including

MG-RAST.

We conducted experiments using virtual machines (VMs)

in the Magellan cloud. We use the default configuration for

all the VMs: 8 VCPUs (each with 2.6 GHz), 22 GB memory,

and 300 GB disk. Shock has an additional 10 TB attached

volumn to store data. The Shock and AWE servers have special

ports open for RESTful APIs. In the experiments, we have

another 80 VM quota for AWE clients, meaning that we can

dynamically start and terminate VMs for AWE clients and can

run up to 80 AWE clients simultaneously. The file transfer

speed between AWE clients and Shock can be up to 110 MB

per second.

B. Sample Jobs

We selected samples from MG-RAST job repository repre-

senting different file formats and sample sizes (Table 1).

TABLE I
JOB CHARACTERISTICS

Format Name Size Seqs Avg. File Size
(Mbp) (M) len.

FASTA [3] FA1 100 1.0 100 133 MB
FA2 500 1.0 498 587 MB
FA3 1000 10 100 1.36 GB
FA4 2000 20 98 2.16 GB
FA5 5000 51 98 8.15 GB

FASTQ [11] FQ1 100 0.99 100 337 MB
FQ2 500 50 100 1.59 GB
FQ3 1000 7.8 128 2.52 GB
FQ4 2000 27 75 4.63 GB
FQ5 5000 28 177 11.0 GB

For sample, we run the MG-RAST pipeline for protein anal-

ysis (marked as 1, 2, 4, 5, 6, 7 in Figure 4), which comprises

the most expensive tasks on the critical path. The tasks marked

in green can be parallelized or split (i.e., screen, gene calling,

and similarity search). Each run of the experiment is called a

job, or a test case. In the experiments we run the jobs with

different splitting levels (number of workunits to split) and

with different numbers of client quota (the maximum AWE

clients we can run simultaneously).

C. Evaluation Results

1) Individual jobs: To evaluate the speedup brought by

parallelizing task execution, we conduct experiments that run

each sample with different splitting levels: the number of

workunits to split for parallelizable tasks. Specifically, we set

the split level to 1, 2, 4, 8, 16, and 32 (denoted as w1 to w32).

Figure 5 shows the runtime of all jobs at different splitting

levels. The job runtime comprises the actual program exe-

cution time and data movement time. As shown in the figure,

every job can benefit from splitting tasks. The serial execution

(w1) can be reduced from more than 50 hours to under 10

hours, or from under 10 hours to under 1 hour (meaning up to

90% time reduction). We observe that smaller jobs (regarding

the input data size) can run longer than bigger ones do (e.g.,

FA2 vs FA3, FQ2 vs FQ3, FQ4 vs FQ5). The reason is that

the total runtime is not determined by the raw input, which is

the input data only for the first-stage task (preprocessing). In



fact, it is largely dependent on the input data size for the most

expensive tasks (i.e., protein identification based on Blat [17],

a tool for sequence similarity search).

Fig. 5. Job running time (in hours)

2) Multijob workloads: To measure system throughput

variation, we conduct following experiments: run the 10 jobs

(in Table 1) as a whole (submit them all at the begin-

ning) under different resource configurations, and measure the

timespan (time between first job submission and the last job

completion). Since the total work delivered is the same, a

shorter timespan corresponds to a higher throughput.

Figure 6 shows the total timespan of workloads running

under different configurations, represented by number of client

quota (C) and number of split workunits (W). The client

quota restrains the maximum number of workunits running

in parallel.

As shown in the figure, both increasing C and W can

reduce the timespan. Specifically, when the client quota is 40,

increasing split workunits from 8 to 16 results in significant

running time reduction (20%), while at the same quota, further

increasing W to 32 does not further increase throughput

obviously. This indicates that with 40 clients, splitting tasks

into 8 workunits does not fully utilize the client quota, while

splitting into 16, the system is almost saturated with workunits.

At this condition, increasing client quota can further increase

the throughput. As shown in the figure, with 80 clients, w16

and w32 can be reduce timespan by 20% and 34% compared

the cases with client quota 40.

Fig. 6. Total timespan of different settings. C (40/80): number of client
quota; W (8/16/32): number of split workunits per task

Figure 7 shows the data movement overhead of jobs in each

of the throughput tests. The overhead of a job is calculated as

the total data movement time of all workunits divided by the

total runtime of all workunits. The average, maximum, and

minimum values in the figure are among the 10 jobs in each

test run. The range of overhead is moderate, but it increases

as number of client quota increases. It is because AWE clients

are competing the bandwidth to the single Shock server. We

can address this problem by deploying multiple Shock, each

serving a group of AWE clients.

Fig. 7. Data movement overhead

IV. RELATED WORK

A number of available scientific workflow systems have

been developed for different needs [9], such as GUI-based

Taverna [21] and Kepler [18], and script-based Pegasus [13]

and Swift [30]. In order to utilize high-performance computing

resources, existing workflow systems typically submit jobs

to external resource management system such as HTCondor

[28] and SGE [8]. Our platform not only provides workflow

management but also serves as a resource management system

providing capability of queue management and computing

clients management. Also, our platform integrates workflow

management and data management in a loosely coupled fash-

ion (using REST APIs) that facilities the computation and

management of large data sets. Therefore, our system is an

integrated data analysis ecosystem including task, computing

resource, and data management.

Over the past decade, bioinformatics has been utilizing

distributed systems, such as grids [25] and clouds [22][24].

Our framework utilizes multiple techniques: the tasks can be

executed on distributed, heterogeneous computing resources

including supercomputers in data centers or virtual machines

in clouds. Our previous work [31][33] implemented an ap-

proach to scale MG-RAST tasks into the Magellan cloud,

but it is for one computationally expensive task only (not

supporting the full pipeline). Our new infrastructure is much

more comprehensive, which can be used to build a general

data analysis ecosystem providing workflow, resource, and

data management.

Emerging programming models such as MapReduce [12]

also applied to bioinformatics [19]. The way AWE splits and

merges data looks similar to MapReduce, but the compute

diagrams are different in several aspects. From the system

perspective, MapReduce requires that all the data be stored

in the HDFS file system in a cluster. AWE workers do not



need to be in the same file system; instead, they can be

run on geographically distributed, heterogeneous computing

resources. From the workload perspective, AWE is suitable

for high-compute-to-I/O workloads (a small amount of data

needs a long time to compute) which is typically true for

(meta)genomics workloads. MapReduce is more suitable for

data intensive workloads where each task requires a short time

to run. Also, AWE is for workflows/pipelines while MapRe-

duce is for individual applications; hence, a MapReduce job

can be dispatched as an AWE task at some pipeline stage.

V. CONCLUSION

With many areas of computational sciences thriving, the

accompanied data deluge imposes big challenges in data man-

agement and analysis. In this paper, we address this problem

from the perspective of computational biology. Specifically, we

are building a scalable data analysis infrastructure to support

the execution and data management of higher-level biolog-

ical sequence analysis applications. As a product, we have

developed the Shock data management and AWE workflow

management system which can be used to build a scalable a

data analysis platform. Our systems are evaluated by running

the MG-RAST pipeline and is also suitable for building any

kinds of pipeline for biological sequence data analysis. In

the future, we plan to deploy our platform to serve more

applications. From the system perspective, we plan to enhance

our platform with more comprehensive resource management

and jobs scheduling strategies (e.g., multisite job coscheduling

[27]) to achieve optimal system throughput.
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